Practice questions
page1 page2 page3 page4 page5 page6 page7 page87. Complex Numbers and Fractions
31. Simplify $\dfrac{4+3i}{5+3i}$. Write your answer in the form $a + bi$.
Solution:
Multiply and divide the complex conjugate:
$=\dfrac{(4+3i)(5-3i)}{(5+3i)(5-3i)}$
Multiply and remove the parentheses in the numerator. And use the formula: $(a+ib)(a-ib)=a^2+b^2$ for the denominator.
$=\dfrac{20-12i+15i-9i^2}{5^2+3^2}$
Substituting $i^2=-1$:
$=\dfrac{20+3i-9(-1)}{25+9}$
$=\dfrac{29+3i}{34}$
$=\dfrac{29}{34}+\dfrac{3i}{34}$
32. Multiply $2i(-4-i)^2$.
Solution:
$=2i(-(4+i))^2$
$=2i(4+i)^2$
Expanding using the forumla $(a+b)^2 = a^2+2ab+b^2$:
$=2i(4^2+8i+i^2)$
Substitute $i^2=-1$
$=2i(16+8i-1)$
$=2i(15+8i)$
$=30i+16i^2$
$=30i+16(-1)$
$=-16+30i$
33. Simplify.
(a) $i^{42}$
(b) $i^{17}$
(a).
Solution:
$i^{42}=i^2=-1$
Note that 2 is the remainder after dividing 42 by 4.
(b).
Solution:
$i^{17}=i^1=i$
Note that 1 is the remainder after dividing 17 by 4.