Practice questions
page1 page2 page3 page4 page5 page6 page7 page8Radical expressions and rational numbers as exponents.
20. Simplify the following expressions.
(a) $\sqrt[5]{s^3}\:\sqrt[4]{s}$ (Write the answer in radical notation.)
(b) $\sqrt{108}$
(c) $-\sqrt[3]{-125a^6b^9c^{12}}$
(d) $3x\sqrt[3]{xy^2}-2\sqrt[3]{8x^4y^2}$
(e) $\sqrt{x^2-4x+4}$; $x\ge 0$
Solution:
(a).
First write the expression in exponential notation:
$=s^{\frac{3}{5}}\:s^{\frac{1}{4}}$
$=s^{\frac{3}{5}+\frac{1}{4}}$
$=s^{\frac{3}{5}+\frac{1}{4}}$
$=s^{\frac{17}{20}}$
Write in radical form:
$=\sqrt[20]{s^{17}}$
(b).
Factoring what is inside the radical sign:
=$\sqrt{4\cdot 9\cdot 3}$
=$2\cdot 3\sqrt{3}$
=$6\sqrt{3}$
(c).
=$-(-5)a^2b^3c^4$
=$5a^2b^3c^4$
(d).
=$3x\sqrt[3]{xy^2}-2\cdot 2 x\sqrt[3]{xy^2}$
=$3x\sqrt[3]{xy^2}-4x\sqrt[3]{xy^2}$
=$-x\sqrt[3]{xy^2}$
(e).
$\sqrt{x^2-4x+4}$;
Factor the expression inside the radical sign:
=$\sqrt{(x-2)^2}$
=$|x-2|$
Note that, I put the absolute value symbol as the radical sign represents a positive number. It is given, $x\ge 0$, that includes for example, $1$. If you substitute $x=1$, you will get a negative number if you don't put the absolute value symbol.
21. Rationalize the denominator for the following expressions.
(a) $\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{6}-\sqrt{5}}$
(b) $\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}$
(a).
Multiply and divide the conjugate of the denominator (change the sign of the second term to get the conjugate):
$=\dfrac{(\sqrt{2}-\sqrt{3})\cdot (\sqrt{6}+\sqrt{5})}{(\sqrt{6}-\sqrt{5})\cdot (\sqrt{6}+\sqrt{5})}$
Do multiplication in the numerator and remove the parentheses. The denominator, write as a difference of squares:
$=\dfrac{\sqrt{2}\cdot \sqrt{6}+\sqrt{2}\cdot \sqrt{5}-\sqrt{3}\cdot \sqrt{6}-\sqrt{3}\cdot \sqrt{5}}{(\sqrt{6})^2-(\sqrt{5})^2}$
$=\dfrac{\sqrt{12}+\sqrt{10}-\sqrt{18}-\sqrt{15}}{6-5}$
Factor out the square roots if possible,
$=\dfrac{\sqrt{4\cdot 3}+\sqrt{10}-\sqrt{9\cdot 2}-\sqrt{15}}{1}$
$=2\sqrt{3}+\sqrt{10}-3\sqrt{2}-\sqrt{15}$
22. Multiply.
(a) $(3\sqrt{7}+2\sqrt{5})(2\sqrt{7}-4\sqrt{5})$
(b) $(3-\sqrt{2})^2$
Solution:
(a).
Multiply and remove the parentheses:
$=3\sqrt{7}\cdot 2\sqrt{7}-3\sqrt{7}\cdot 4\sqrt{5}+2\sqrt{5}\cdot 2\sqrt{7}-2\sqrt{5}\cdot 4\sqrt{5}$
Multiply the numbers outside the square roots and combine the square roots:
$=6\sqrt{49}-12\sqrt{35}+4\sqrt{35}-8\sqrt{25}$
$=6\sqrt{49}-12\sqrt{35}+4\sqrt{35}-8\sqrt{25}$
$=6\cdot 7-12\sqrt{35}+4\sqrt{35}-8\cdot 5$
$=42-8\sqrt{35}-40$
$=2-8\sqrt{35}$
23. Solve the following equations.
(a) $\sqrt[3]{x-8}+3=0$
(b) $5=\sqrt{7x-3}$
(c) $(2w-1)^{2/3}-w^{1/3}=0$
Solution:
(a).
Isolate the cube root:
$\sqrt[3]{x-8}=\color{red}-3$
Take the third power on both sides to remove the radical sign:
$(\sqrt[3]{x-8})^3=(-3)^3$
$x-8=-27$
Solve for $x$:
$x=-19$
Thus, the solution is $x=-19$.
(b).
Square on both sides to remove the square root:
$5^2=(\sqrt{7x-3})^2$
$25=7x-3$
Solving for $x$:
$x=4$
Since the original equation has a square root (an even root), you need to check whether $x=4$ is the solution. Substituting $x=4$ in the original equation:
$5=\sqrt{7\cdot 4-3}$
$5=\sqrt{25}$
$5=5$
This is true. So, $x=4$ is the solution.
(c).
The equation can be written in radical form as
$\sqrt[3]{(2w-1)^2}-\sqrt[3]{w}=0$
Move the second term on the left hand side to the right hand side:
$\sqrt[3]{(2w-1)^2}=\sqrt[3]{w}$
Now we can remove the radical sign by taking the third power on both sides:
$\left(\sqrt[3]{(2w-1)^2}\right)^3=(\sqrt[3]{w})^3$
$(2w-1)^2=w$
Use the formula, $(a-b)^2=a^2-2ab+b^2$ to expand the left hand side:
$(2w)^2-2\cdot 2w\cdot 1+1^2=w$
$4w^2-4w+1=w$
Move $w$ to the left hand side and solve the quadratic equation:
$4w^2-4w+1\color{red}-w$$=0$
$4w^2-5w+1=0$
Solve by factoring:
$4w^2-4w-w+1=0$
$4w(w-1)-(w-1)=0$
$(w-1)(4w-1)=0$
By zero-product rule:
$w-1=0$ or $4w-1=0$
$w=1$ or $w=1/4$