Practice questions
page1 page2 page3 page4 page5 page6 page7 page81. Linear inequalities and absolute value equations
1. Solve the following expressions.
(a) $|y+2|-1=10$
(b) $|2x-1|\ge 7$
(b) $|x+5|-6\le -1$
Solution:
(a).
First isolate the absolute value.
$|y+2|=10\color{blue}+1$
$|y+2|=11$
Solution for the above equation is
$y+2=-11$ or $y+2=11$
Solving for $y$
$y=-11\color{red}-2$ or $y=11\color{red}-2$
$y=-13$ or $y=9$
The solution set is $\{-13, 9\}$
(b).
The absolute value, $|2x-1|$ is greater than or equal to a positive number, $7$.
The solution is
$2x-1\le -7$ or $2x-1\ge 7$
Next, you need to solve for $x$.
Add $1$:
$2x\le -7\color{red}+1$ or $2x\ge 7\color{red}+1$
$2x\le -6$ or $2x\ge 8$
Divide $2$:
$x\le -6/2$ or $x\ge 8/2$
$x\le -3$ or $x\ge 4$
The solution in interval notation:
$(-\infty, -3]\cup [4, \infty)$
(c).
Isolate the absolute value:
$|x+5|\le -1\color{red}+6$
$|x+5|\le 5$
An absolute value is less than or equal to a positive number $5$.
The solution is
$-5\le x+5 \le 5$
Add $-5$
$-5-5 \le x+5-5 \le 5-5$
$-10 \le x \le 0$
In interval notation, the above solution is
$[-10, 0]$
2. Solve and graph the solutions for the following problems. Write the solution in interval notation.
(a) $4-3x\ge 10$ or $5x-2\gt 13$
(b) $7x+4\ge -17$ and $6x+5\ge -7$
Solution:
(a).
Solve for $x$ in each inequality:
$-3x\ge 10\color{red}-4$ or $5x\gt 13\color{red}+2$
$-3x\ge 6$ or $5x\gt 15$
$\dfrac{-3x}{-3}\le \dfrac{6}{-3}$ or $\dfrac{5x}{5}\gt \dfrac{15}{5}$
$x\le -2$ or $x\gt 3$
Graph:

In interval notation:
$[-\infty, -2]\cup(3, \infty)$
(b).
Solve for $x$ in each inequality:
$7x\ge -17\color{red}-4$ and $6x\ge -7 \color{red}-5$
$7x\ge -21$ and $6x\ge -12$
$\dfrac{7x}{7}\ge \dfrac{-21}{7}$ and $\dfrac{6x}{6}\ge \dfrac{-12}{6}$
$x\ge -3$ and $x\ge -2$
Graph:

In interval notation:
$[-2, \infty)$