Practice questions
page1 page2 page3 page4 page5 page6 page7 page8The Algebra of Functions, Composite Functions and Inverse Functions
28. Simplify as much as possible.
(a) Find $\dfrac{f}{g}$ if $f(x)=\dfrac{x^2-16}{x^2-10x+25}$ and $g(x)=\dfrac{3x-12}{x^2-3x-10}$.
(b) Find $(f-g)(x)$ if $f(x)=\dfrac{5ab}{a^2-b^2}$ and $g(x)=\dfrac{a-b}{a+b}$.
(c) Find $(f\cdot g)(-3)$ if $f(x)=\dfrac{3x}{6x^2-13x-5}$ and $g(x)=4x-10$.
Solution:
(a).
$\dfrac{f}{g}=\dfrac{f(x)}{g(x)}$
$=\dfrac{x^2-16}{x^2-10x+25}\div \dfrac{3x-12}{x^2-3x-10}$
Change the division into multiplication by taking the reciprocal of the rational expression that follows the $\div$ symbol:
$=\dfrac{x^2-16}{x^2-10x+25}\cdot \dfrac{x^2-3x-10}{3x-12}$
Factor the expressions in the numerator and the denominator:
$=\dfrac{(x+4)(x-4)}{(x-5)(x-5)}\cdot \dfrac{(x-5)(x+2)}{3(x-4)}$
Cancelling that can be cancelled:
$=\dfrac{(x+4)(\cancel{x-4})}{(x-5)(\cancel{x-5})}\cdot \dfrac{(\cancel{x-5})(x+2)}{3(\cancel{x-4})}$
$=\dfrac{(x+4)(x+2)}{3(x-5)}$
(b).
$(f-g)(x)=f(x)-g(x)$
Substituting $f(x)$ and $g(x)$:
$=\dfrac{5ab}{a^2-b^2}-\dfrac{a-b}{a+b}$
Factoring $a^2-b^2=(a+b)(a-b)$:
$=\dfrac{5ab}{(a+b)(a-b)}-\dfrac{a-b}{a+b}$
LCD$=(a+b)(a-b)$
Divide the LCD by the denominator of each term and multiply that. And put the LCD as the common denominator:
$=\dfrac{5ab-(a-b)(a-b)}{(a+b)(a-b)}$
$=\dfrac{5ab-(a-b)^2}{(a+b)(a-b)}$
Expanding, $(a-b)^2=a^2-2ab+b^2$:
$=\dfrac{5ab-(a^2-2ab+b^2)}{(a+b)(a-b)}$
$=\dfrac{5ab-a^2+2ab-b^2}{(a+b)(a-b)}$
$=\dfrac{7ab-a^2-b^2}{(a+b)(a-b)}$
(c).
$(f\cdot g)(-3)=f(-3)\cdot g(-3)$
You need to find $f(-3)$ and $g(-3)$ and multiply them.
$f(-3)=\dfrac{3(-3)}{6(-3)^2-13(-3)-5}$
$=\dfrac{-9}{54+39-5}$
$=\dfrac{-9}{88}$
$g(-3)=4(-3)-10$
$=-12-10$
$=-22$
$(f\cdot g)(-3)=\dfrac{-9}{88}\cdot (-22)$
$=\dfrac{9}{4}$
29. Determine whether or not $g(x)=\sqrt{x-3}$ is one-to-one and, if possible, find $g^{-1}$.
Solution:
The given function is a one-to-one function.
To find the inverse, $g^{-1}$
1. Replace, $g(x)$ by $y$:
$y=\sqrt{x-3}$
2. Switch $x$ and $y$:
$x=\sqrt{y-3}$
3. Solve for $y$:
The variable $y$ is inside the square root. To solve for $y$, you need to remove the square root by squaring on both sides:
$x^2=(\sqrt{y-3})^2$
$x^2=y-3$
Solving for $y$:
$y=x^2+3$
This $y$ is the inverse.
Thus, $g^{-1}(x)=x^2+3$
30. Find $(f\circ g)(x)$ and $(g\circ f)(x)$ given $f(x)=4x^2-1$ and $g(x)=\dfrac{2}{x}$.
Solution:
$(f\circ g)(x)=f(g(x))$
Take the function $f(x)$ and replace the $x$ with the function $g(x)$. Since $g(x)=\dfrac{2}{x}$. So, you need to replace $x$ in $f(x)$ by $\dfrac{2}{x}$
$(f\circ g)(x)=4\left(\dfrac{2}{x}\right)^2-1$
$=4\left(\dfrac{2^2}{x^2}\right)-1$
$=4\left(\dfrac{4}{x^2}\right)-1$
$=\dfrac{16}{x^2}-1$
$(g\circ f)(x)=g(f(x))$
Take the function $g(x)$ and replace the $x$ with the function $f(x)$. Since $f(x)=4x^2-1$. So, you need to replace $x$ by $4x^2-1$.
$(g\circ f)(x)=\dfrac{2}{4x^2-1}$