Practice questions
page1 page2 page3 page4 page5 page6 page7 page83. Polynomials and Rational Expressions
14. Simplify $\dfrac{(3x^5y^{-3})^{-4}}{9xy^2}$
Solution:
$=\dfrac{3^{-4}x^{5(-4)}y^{-3(-4)}}{9xy^2}$
$=\dfrac{3^{-4}x^{-20}y^{12}}{9xy^2}$
$=\dfrac{x^{-20}y^{12}}{3^4\cdot 9xy^2}$
$=\dfrac{y^{12-2}}{81\cdot 9x^{1+20}}$
$=\dfrac{y^{10}}{729x^{21}}$
15. Multiply $(3x-7y)^2$
Solution:
Use the formula, $(a-b)^2=a^2-2ab+b^2$
$=(3x)^2-2\cdot 3x\cdot 7y+(7y)^2$
$=9x^2-42xy+49y^2$
16. Divide $\dfrac{x^2+3x-10}{x+5}$
Solution:
$=\dfrac{(x+5)(x-2)}{x+5}$
$=x-2$
17. Factor the following expressions.
(a) $64x^9y^9+24x^2y^6$
(b) $m^3+4m^2-6m-24$
(c) $8x^2-6x-9$
(d) $16x^2-81$
(e) $8c^3+125$
(f) $x^2+6x+9-4y^2$
Solution:
(a).
Factor out the greatest common factor:
$=8x^2y^6(8x^7y^3+3)$
(b).
Factor by grouping.
$=\underline{m^3+4m^2}\:\:\underline{-6m-24}$
$=m^2(m+4)-6(m+4)$
$=(m+4)(m^2-6)$
(c).
$8x^2-6x-9$
This is a quadratic. Multiplying the coefficient of $x$ and the constant term, you get $-72$. Find two numbers whose product is $-72$ and their sum is $-6$. The two numbers are $-12$ and $6$. Write the $x$ term as $-12x+6x$:
$=8x^2-12x+6x-9$
Factor by grouping:
$=\underline{8x^2-12x}+\underline{6x-9}$
$=4x(2x-3)+3(2x-3)$
$=(2x-3)(4x+3)$
(d).
You can write the expression as a difference of squares:
$=(4x)^2-9^2$
Use the difference of squares formula: $a^2-b^2=(a+b)(a-b)$
$=(4x+9)(4x-9)$
(e).
You can write the expression as a sum of cubes:
$=(2c)^3+5^3$
Use the sum of cubes formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$
$=(2c+5)((2c)^2-2c\cdot 5+5^2)$
$=(2c+5)(4c^2-10c+25)$
(f).
Factor by grouping: take the first three terms together as you can write it as a perfect square:
$=\underline{x^2+6x+9}-4y^2$
Factoring the quadratic that is underlined, you get: $(x+3)(x+3)$$=(x+3)^2$.
$=\underline{(x+3)^2}-4y^2$
This can be written as a difference of squares:
$=(x+3)^2-(2y)^2$
Apply the difference of squares formula: $a^2-b^2=(a+b)(a-b)$:
$=(x+3+2y)(x+3-2y)$
18. Solve the following equations.
(a) $2k^2=9k-9$
(b) $\dfrac{3}{k+2}-\dfrac{2}{k^2-4}=\dfrac{1}{k-2}$
Solution:
(a).
Write the equation in standard form of a quadratic equation:
$2k^2-9k+9=0$
Factor:
$2k^2-6k-3k+9=0$
$2k(k-3)-3(k-3)=0$
$(k-3)(2k-3)=0$
By zero-product rule:
$k-3=0$ or $2k-3=0$
Solve for k:
$k=3$ or $k=3/2$
Solution:
$\{3, 3/2\}$
(b).
First factor the expression $k^2-4$ in the denominator. This you can write as a difference of squares: $k^2-2^2=(k+2)(k-2)$:
$\dfrac{3}{k+2}-\dfrac{2}{(k+2)(k-2)}=\dfrac{1}{k-2}$
Least common denominator is $(k+2)(k-2)$
Multiply this in each term of the equation:
$\dfrac{3}{k+2}\cdot (k+2)(k-2)-\dfrac{2}{(k+2)(k-2)}\cdot (k+2)(k-2)$
$=\dfrac{1}{k-2}\cdot (k+2)(k-2)$
Canceling:
$\dfrac{3}{\cancel{k+2}}\cdot (\cancel{k+2})(k-2)-\dfrac{2}{(\cancel{k+2})(\cancel{k-2})}\cdot (\cancel{k+2})(\cancel{k-2})$
$=\dfrac{1}{\cancel{k-2}}\cdot (k+2)(\cancel{k-2})$
You get,
$3(k-2)-2=k+2$
Now, solve for $k$:
$3k-6-2=k+2$
$2k=10$
$k=5$
Since the original equation is a rational equation, you need to check whether the $k=5$ is the solution by substituting this in the original equation. We can confirm, $5$ is the solution.
Thus, the solution is $k=5$.
19. Simplify the following expressions.
(a) $\dfrac{m^2-49}{m+1}\div \dfrac{7-m}{m}$
(b) $\dfrac{5x}{x^2+xy-2y^2}-\dfrac{3x}{x^2+5xy-6y^2}$
Solution:
(a).
You can factor $m^2-49$ as $(m+7)(m-7)$:
$=\dfrac{(m+7)(m-7)}{m+1}\div \dfrac{7-m}{m}$
Replace the multiplication by taking the reciprocal of the rational expression that follows the division sign:
$=\dfrac{(m+7)(m-7)}{m+1}\cdot \dfrac{m}{7-m}$
Write $7-m=-(m-7)$ as this and the $(m-7)$ in the denominator, you can cancel out:
$=\dfrac{(m+7)(m-7)}{m+1}\cdot \dfrac{m}{-(m-7)}$
Canceling $(m-7)$:
$=-\dfrac{m(m+7)}{m+1}$
(b).
Factor the expressions in the denominators:
$=\dfrac{5x}{(x+2y)(x-y)}-\dfrac{3x}{(x+6y)(x-y)}$
LCD$=(x+2y)(x-y)(x+6y)$
In each term, divide the $LCD$ by the denominator and multiply that. And put the LCD as the common denominator:
$=\dfrac{5x(x+6y)-3x(x+2y)}{(x+2y)(x-y)(x+6y)}$
Multiply and remove the parentheses in the numerator:
$=\dfrac{5x^2+30xy-3x^2-6xy}{(x+2y)(x-y)(x+6y)}$
$=\dfrac{2x^2+24xy}{(x+2y)(x-y)(x+6y)}$
Factor the numerator:
$=\dfrac{2x(x+12y)}{(x+2y)(x-y)(x+6y)}$